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PREFACE

This Final Report describes research on automatic language classification by Texas
Instruments Incorporated, Equipment Group, 13500 North Central Expressway, Dallas, Texas,
under Contract No. F30602-74-C-0245 for Rome Air Development Center, Griffiss Air Force
Base, New York. Mr. Richard S. Vonusa (IRAP) was the RADC Project Engineer. The report
covers work performed from May 1974 through May 1975.
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SECTION |
INTRODUCTION

The problem studied is to design and simulate a system that will automatically determine
to which of several specified languages a given segment of speech belongs, and to do this with
small probability of error. This report contains the results of the second phase of study of such a
system. In the first phase [Reference 1] classification was based on langusge likelihoods
computed for certain reference sounds. Those sounds were short phoneme-like segments. In the
second phase, classification is based on sequences of several such segments, which altows more
accuracy and reliability in the automatic segmentation process. Another improvement is the use
of “‘time-frequency scanning” to accept or reject hypothesized occurrences of component sound
segments.

The algorithms discussed here automatically produce the information needed for language
discrimination without reference to the particular languages being considered. This approach
altows treatment of additional languages with little additional effort and with no need for special
knowledge of those languages.

Two separate data sets of equal size have been used in this study. The {irst is used to
design the classifier, and the second is used for estimating the probability of error to be expected
in using the classifier. The data sets used in this second phase of the study are the same as those
used in the first phase.

A decision rule based on occurrence frequency information about sequences of length §
and single segments allowed five-language classification accuracy of 70 percent.

5/6
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| SECTION It
1 DATA PREPROCESSING

Analog speech data recordings for this study were provided by RADC. The data are from
five languages, denoted L, L,, Ly, L4, and Ls. This designation is adequate since the algorithms
and techniques described herein treat each language identically. No processing is tailored to
specific languages. Data from 100 distinct speakers were processed: 50 speakers provided data for
estimating decision parameters and generating reference files (“‘training data”); and data from S0
= other speakers (“testing data™) were used to provide unbiased estimates of decision accuracy.

The training data consisted of 90-second segments of speech from each of 10 speakers of

] each of the five languages. The testing data comprise 90-second segments from: 10 speakers of

L,, L;, and Ls; 6 speakers of L,; and 14 speakers of La. The testing data were used only to
£ determine performance.

1. ANALOG PREPROCESSING

4 The analog speech data base was preprocessed using the hardware shown functionally in
Figure 1. Fifteen bandpass filters were used to provide a time-frequency signal analysis. The
i} center frequencies and bandwidths of these filters are shown in Table L. Following the low-pass
' filtering, the signals in each channel are sampled, digitized to 11 bits, and stored for additional
1] processing. One hundred samples per second are retained to represent the speech information. In
. the following description, g will denote a column vector of data values stored at some specified
time. Since the operations performed at each sampling time are identical, reference to the

specific time will be suppressed. The symbol g =[g g ...g) will denote the transpose of the
1 column vector g.
¥
i 2. NORMALIZATION AND QUANTIZATION
Some speaker normalization is accom- TABLE I. FILTER
! plished by regressing the data vector g upon BANK PARAMETERS
; regression vectors chosen to maximize
¥ between-speaker to within-speaker variance in Filter Proditene Bandwidth
! the time-frequency spectrum {Reference 11. Number (qHz) o (Hz)
The expression for the normalized data vector
is 1 355 220
2 530 220
- T 3 705 220
=1/of
e = 1/ 4 880 220
; where T is the original data vector g with the 2 iggg %gg
| components along the regression vectors sub- 7 1405 220
{ tracted out, and 8 1580 220
f 9 1755 220 |
. Sl b e 2 : Ez 10 1930 220
: 11 2105 220
12 2280 220
. 13 2455 220
i 14 3500 1000
15 6500 3000
1
7
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The value of ¢ is used as a measure of the overall energy level of the specch. Letting g denote
the irh component of the normalized data vector gy, and letting ¢, and ¢, denote the regression
coefficients for the first and second order regression vectors, the jth component fj of the final
data vector { is shown in Table 11, for j=1, 2,...,12. Thus, { is a 12-clement vector, nine
elements of which are from normalized filter outputs, along with two regression coefficients and
the overall energy measure. Following normalization, each element of the data vector f is
quantized to 3 bits and stored on digital magnetic tape. Figure Z shows data vectors from several
consecutive time samples forming a quantized and digitized speech spectrum for the spoken word
“warheads.” The original spectrum, the reduced spectrum, and the auxiliary measures ¢;, ¢,;, and
o are shown for this sample.

In following sections, computations will be made which use the data {rom certain specified
time samples. These data will be considered as a matrix, each column of which is a 12-tuple of
the form just defined. For example, the matrix of preprocessed data at timest - 2, t -1, t,
t+ 1, and t +2 will be written

P={[f(t —2)f(t — 1) f(t) f(t+ 1) f(t+2)]

TABLE . COMPONENTS OF REDUCED SPECTRUM DATA VECTOR

Component Composition

fy 81
fa % (g2 * 83)
f3 % (ga *+ 8s)
fa % (86 + 87)
fs % (s *+ 89)
% (810 + g11)
% (812 * 813)
814
815
€y
C2
o
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SECTION Il
KEY SOUND DETECTION

The general solution of the language classification problem is to first find those acoustic
elements which hLave language characterizing capability (i.e., those elements which occur with
greatly different likelihoods in different languages), and then, having observed such an acoustic
element, estimate the likelihoods of the various hypothesized languages and choose that language
which is most likely. This section deals with the first step of this solution, the isolation of key
sounds. The structure of the sounds considered in this study is a sequence of phoneme-like
acoustic elements, as determined from the spectral representation of the speech data described in
the previous section. Each sequence of length k is determined by k points of time registration,
and is represented by k sets of data vectors, where k = 2, 3, 4, or 5. The result of the procedures
described in this section is a reference set of key‘ sounds (sequences) to be used for estimating
language likelihoods.

1. INTERSEGMENT SIMILARITY

Extensive use is made of the squared erfor between two matrices (vectors) representing
sound segments. Suppose F= [f;()) and G= [g()] each comprise M data vectors, e S
el . W Then the squared error between F and G, written e(F,G), is defined to be

M 12 '
e(F,G) =2 Z [1,6) — g, ()2

=1 =l
TIME REGISTRATION

Points of time registration in the data are defined in terms of the overall energy measure,
o, and a transitionitivity function, T, a real-valued function of time which reflects the magnitude
of dynamic spectral change. Let R(t) denote the 12 X3 matrix consisting of data vectors from
three consecutive sampling times centered at time t;i.e.,

R(t) = [f(t — 1) f(t) f(t + 1))

Then, the transitionitivity at time t, T(t), is defined to be the squared error between R(t -1)
and R(t+ 1):

rt) = e[R(t — D), R(t + D]

Figure 3 illustrates the format of the data vectors used to compute T. If T(t) is small, then the
two matrices are similar and t is a time of relatively steady-state speech. If T(t) is large, then t is
a time of transition in the spectrum.

During data processing, the T function is computed at each sample time and is monitored
to determine its peaks and valleys. Each peak in the T function is labeled as a time registration
point, provided that (1) ihe value of the peak is greater than 50, and (2) the smallest values of
the overall energy measure o in a 0.1second neighborhood about that time is greater than 280.
Condition (1) is imposed to overlook those small spectral changes which probably are not actual
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Figure 3. Data Vectors Used to Compute Transitionitivity

phoneme boundaries, and condition (2) prevents consideration of silence segments. The threshold
levels were determined as a result of inspection of speech spectra.

At each registration time, a scanning pattern (SP) is extracted and stored for use in

representing candidate reference sequences. Let S(t) denote a typical SP extracted at time t.
Then S(t) consists of three derived data vectors

S(t) = [g1 2. 831

where

g, = Wt — 2) + {(t — 1]
g, = WIf(t + 1) + {(t + 2)]

g3 T8 — 8-
The data vectors marked with asterisks in Figure 3 are used in determining an SP at time t.

The first 90 seconds of speech data from cach of the 50 training speakers was processed to
extract and store scanning patterns at each time registration point. Table 11 shows the numbers
of SPs extracted.

o Al -



TABLE III. NUMBERS OF EXTRACTED SCANNING PATTERNS

Language L, L, L, L, Ls
Number of Scanning Patterns 5399 6,759 S012 5699 6,345

REFERENCE FILE GENERATION

Any sequence of k(k = 2, 3, 4, and S) consecutive seanning patterns separated by no more
than 0.25 second was considered to represent a potentially useful sound sequence. The total
aumber of these candidate reference sequences (approximately 116,000, as seen from Table 1)
was too large to process the desired amount of training and testing. Hence, the procedures in the
following sections were adopted to choose a small subset of these candidate reference sequences
for use in the final language classifier. The object of the procedures is to find those sequences
which oceur often in the data and are distinct from each other. The procedures to be described
were performed for each value k, k = 2, 3, 4, and 5. Hence, specific reference to the particular
sequence length will often be omitted.

Scanning Error

In ascertaining the occurrence of a sequence, use is made of the “scanning error,” E, a
real-valued function of a fixed scanning pattern, S, and of time, t. Let F(t) denote the derived
data matrix {g, g, g3, where

g, = alf(t — 2) + f(t — B}
g, = RIf(t+ 1)+ {(t +2)]
Bar=gn Sigy

f(t) = dlata vector at time t.

Note that F has the same formmat as the scanning pattern. Then the scanning error E(S,t) for
scanning pattern S is defined to be

E(S,t) = e[S, F(1)]

A relative minimum in the scanning error for S indicates a time at which the speech data is
similar to the scanning pattern S.

b. Sequence Detection

The recurrence of reference sequences is detected by first scanning the input data to
hypothesize the occurrence of appropriate time registration points, and then hypothesizing
sequence recurrence when the relationships among hypothesized time registration points corre-
spond to those in the reference sequence. Rejection of sequence recurrence is based on spectral
similarity between reference sequence scanning patterns and the input data.

To be more specific, consider the detection of reference sequences ol length 2. Let (S;,
S,) denote a reference pair, where S; is the scanning pattern extracted from the training data at
time T;, i=1, 2. Let AT denote |T, — T, |, the time separation between seanning patterns, and




assume that T, < T,. During processing ol the input data, the scanning errors L(Si, t) i=1,2 are
computed and monitored to label the valleys in each of these scanning error functions. These
valley points are hypothesized to be time registration points for the corresponding scanning
pattern. Whenever a valley in E(S,, t) precedes a vailey in E(Sy, t) by less than 0.25 second, the
recurrence of the reference pair (S,. S;) is hypothesized.

The basis for acceptance or rejection of this hypothesis is the pair error, denoted ;. Let
t, denote the time of occurrence of a valley in E(S;, 1), i=12, and let At= |t, —t;]. Let
e, = L(S;, ;) denote the value of the scanning error at the valley time t;, i=1,2. Assume that
it, -t} < 0.25 second, so that the recurrence of (S;, S;) is hypothesized. This hypothesis is

rejected if and only if E; > EMAX,, where EMAX, is a fixed threshold and E, is delined to be

2

(e, *40) (e, +40) { , 4iat - al

It ean be seen that, for detecting the occurrence of a reference pair (S, S, ), the time separation
of registration times in the data must be close to that of the scanning patterns, and also the
scanning patterns must each be similar to corresponding transitions found in the data.

For detection of sequences of length k, k =3, 4, and 5, the scanning error valleys for each
of the k scanning patterns are recorded, and an occurrence hypothesized whenever (1) k scanning
error valleys, one from each scanning pattern, occur in the same order as did the scanning
patterns; and (2) no time interval between adjacent valleys is greater than 0.25 second. The pair
errors between each of the k — | pairs of valleys are summed to form a k-sequence error, E,.
The hypothesized occurrence of the sequence is rejected if and only if Ey > EMAX,, where
EMAX, is a specified threshold for sequences of length k.

Preliminary Sequence Selection

Because the average processing time needed to detect occurrences of a single reference
sequence in all the training and testing data is approximately 20 minutes, most of the
approximately 116,000 candidate reference sequences must be eliminated from consideration. As
a lirst step toward this goal, a study was made to determine what constitutes similarity among
candidate reference sequences. Let P, = (S,,, S;2) and P, = (S;;, S;; ) denote candidate
reference sequences, where S;; is a scanning pattern which occurred at time t;;, i,j=1,2. Let e,
and e, denote the squared error e(Sy, , Sy, ) and e(S,, , Sy, ), respectively, and define At = |ty,
— ty; |, and At = |t;; — ty|. Then define the similarity between P, and P, to be

(1 +40) (e, +40) | aiat — AT
2048 max(5, A1)

E, (P, ,P;) =

Note the intentional analogy to the pair error E,.

Let T, = {Si: | 0K S 100} denote a set containing the first 100 candidate
reference sequences of length k hypothesized from the first training speaker of language 57 A
cumulative frequency distribution was plotted for the values of the similarities E((S;, S, | <i <
j < 100. A similarity level § was determined such that P E((P;, P)) < B = 0.75. The values of §
determined for each k are shown in Table IV,




TABLE IV. SIMILARITY THRESHOLD

Sequence Length
Threshold

Then, alt the candidate reference sequences from each language were ordered according to
the following procedure. Let the language and the sequence length be fixed. A subset T,
consisting of 10 percent of the candidate reference sequences from each of the 10 training
speakers was lormed. For every candidate reference sequence S Irom the language considered,
the similarities E((S, R), Re T,, were computed, and the number N(R) of similarity values less
than B (for sequence R) were noted. All candidate reference sequences were then ordered
according to N, with the first sequence being the one with the highest value of N. This
procedure places that sequence occurring more frequently higher in the ordering.

A reduced file ol candidate reference sequences is formed for each language and each
sequence length by first placing in the file that sequence which is first in the above ordering, and
then adding succeeding sequences in the ordering, provided that the minimum of the similarities
between the sequence to be added and each sequence already in the reduced file is greater than a
fixed threshold. This ensures that each sequence in the reduced file is distinct from all others in
the file.

The procedure for determining the add threshold is as follows. A small file of candidate
reference sequences Irom 34 ¢onsecutive scanning patterns from one training speaker was
formed. Occurrences of these sequences were detected in 10 seconds of data from each of the
nine other training speakers of the language. The sequence rejection threshold EMAX, was set
large enough so that all hypothesized sequences and their corresponding E, values are recorded.

The cumulative l’requenci/ distribution of the values ol E, was plotted and the add threshold «

was chosen such that P
and each sequence length.

I oz} = (0.98. Table V shows the add thresholds for each language

The total numbers of hypothesized sequences from the experiment described in the
preceding paragraph are shown in Table VI for each language and each sequence length. These
numbers were used to determine the proportions of the desired numbers of reference sequences
of the various lengths. These proportions are the inverses of the ratios existing among the total
number of hypothesized sequences. That is, if there were twice as many pairs hypothesized as
there were triples, it is desired to have half as many reference pairs as reference triples in the
reduced file. The total numbers of reference sequences added to the reduced file was restricted
by available processing time and computer core storage limitations. The numbers of reference
sequences retained in the reduced files are
shown in Table VI for each language and each TABLE V. ADD THRESHOLDS
sequence length. The total numbers of reference
sequences ol each length are shown in Table VII. Sequence Length
A total of 452 reference sequences remained in Language 3
the reduced file, denoted F. 55
d.  Data Processing for Occurrence Infor- 156

mation 168

Both the training data and the testing data 140
(90 seconds of speech from each of 100 148
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TABLE VI FILE REDUCTION PARAMETERS

Number of Number of
Language Sequence Hypothesized Sequences
Index Length Sequences Retained
1 2 10,817 10
I 3 5,384 21
1 4 2810 42
1 5 1,447 19
2 2 14,846 10
D 3 7.625 21
2 4 4,026 40
2 5 2,164 18
3 2 13,574 7
3 3 5,678 15
3 4 1,646 45
3 5 532 21
4 2 18,880 14
4 3 11,833 23
4 4 7,260 37
4 5 4,027 19
5 2 12,243 9)
5 3 5,715 20
5 4 2,670 41
5 5 1,249 19
TABLE Vii. NUMBER OF REFERENCE
SEQUENCES IN REDUCED FILES
Sequence Length 2 3 RS Total

Number of Sequences 51 100 205 96 452

speakers) were processed to detect the occurrences of each sequence in the reference file F. The
values of EMAX, (the rejection level for hypothesized sequences) was set large enough that all
hypothesized sequences were accepted. For each accepted sequence, record was made of (1) the
index S of the speaker whose data was being processed (and, hence, of his language L), (2) the
index R of the accepted reference sequence (and, hence, its length k), and (3) the value E, of
the overall sequence error. This processing required approximately 150 hours of computer time,
using a TI 980A minicomputer.

To determine the effects of varying the rejection level for detecting sequence recurrence,
six sets of thresholds EMAX, were used in turn to determine an array N(R, S, L). where an
entry in this array is the number of occurrences of reference sequence R during processing of
data from speaker S of language L. (As previously described, an occurrence is counted whenever
Er <EMAX;.) One set of thresholds (Case 0) is the one mentioned in the previous paragraph,

16
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which yields a/l hypothesized sequences. The other sets contain successively lower thresholds,
thereby requiring successively better match between reference and data to yield an occurrence.
Casei, i=1,2,..., 5, are obtained as lollows. First, an empiricat probability density plot was
obtained for values of Eg from training data for Case 0. Figures 4, 5, 6, and 7 show this density
for sequence tength 2, 3, 4, and S, respectively. Let Ny denote the total number of sequences
hypothesized (for some sequence length). From the corresponding distribution, threshold values
were determined which would yietd NT/'.Zi detected sequences, for Case i, i=1, 2, 3, 4. 5. This
procedure was fotllowed for each value of sequence length. The resulting thresholds are shown in
Table V11 Analysis of the results of using the six cases are presented in Section V.

TABLE VIII. SEQUENCE ACCEPTANCE THRESHOLDS
Case
Length 0 1 2 3
2 *999 29 18 13
3 999 61 41 31
4 999 96 69 53
5 999 119 87 69

*Threshold of 999 allows acceplance of every hypothesized sequence.

Final Reference File Formation

The final reference file, F*, ol sequences to be used in computing decision functions 1S
formed by deleting from F those reference sequences which had too little language specificity.
Such sequences were determined by cousidering the average information remaining (uncertainty,
entropy) after detection of a reference sequence in the training data. The lower this uncertainty,
the better is the language discrimination capability of that sequence. Specifically, the entropy
H(R) associated w.th the detection of sequence R is

5
H(R) = —z p(LiR) log [p(L;IR)]

i=1

where p(L;{R) is the language likelihood, given that R has occurred. Let the symbol §; denote
the collection of training speakers of language L, i =1, 2, ... 5, and let M(R, L) denote the

number of detections of reference sequence R during speech from all training speakers of
language L. Then

M(R, L)) = E N(R,S,L),i=1,2,...5
8
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The likelthood p(L;iR) is computed as

q(R. L)

E q(R. L)

i=1

P IR) =

where

MR, L)

E M(R, L))

Rel

q(R, Ll) =

The linal file F* is then

F* = {ReF : HR) < H}

where H, is a fixed entropy threshold. Base 2 logarithms were used in computations; the
maximum entropy possible is log, 5=2.322.
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SECTION IV
DECISION RULES

This section describes the decision rules used to classify data from test speakers. The
general approach is to process d specified amount (90 seconds) of speech data to be classified
(for example, from speaker S). detecting the occurrences of the references in F*. Let R =
{ R R s Rm} denote the sequence of detected reference sequences of a specified length. R
is taken to be the representation of the speech data from speaker S. Then the language
likelihoods described above and the occurrence statistics of the sequence R are used to compute
decision parameters which are used to classify the data as being from one of the five languages
considered. Implementation of the decision strategies was carried out separately for each value of
sequence length k, k = 2,3,4, and 5.

Let p;(R) denote the probability density function for the sequence R, given that language
L, was spoken, 1 = 1,2,3,4,5. Letting P(L) denote the a priori probability for language L, the
decision rule which is optimum in that it incurs the lowest possible probability of misclassification
can be stated as: observe the sequence R and choose the language L; for which

P(L;) py(R) > P(L)) py(R) for i = 12,345

In practice, neither the a priori language probabilities nor the conditional sequence densities are
explicitly known. Hence, approximations to the optimum rule must be used, and less than
optimum results must be tolerated.

The basic strategy is to assume independence of the detected sequences of length k and
then choose the language which maximizes the resultant expression for the log likelihood of the
hypothesized languages given the observation of the data representation R. Let DF;(S,L) denote

the unnormalized decision function value computed for test speaker S and hypothesized language
Le {L,, Ly, Ls, La, Ls} . Then

DF (85 L)« == E log p(LIR)
ReR

where the summation is taken over reference sequences in the data representation R for speaker
S. The following normalization is made. Define

DF, (S,
DF, (S, L) L

Z DF, (S, L)

S

where the summation is over all 50 test speakers. Then let DF(S, L) denote the normalized
decision function used to classify the test speakers, and define

DF,(S, L)

DF(S, L) = —

Y2

{DE, (S, L) }?




Decision rule A is to choose, for speaker S, the language Le {L,, IEh L en (LA Ls} for which
DE(S,L) is smallest.

A second strategy is buased on maximizing the correlation between the decision function
values defined above for the test speaker and normalized decision function values. Let L; and L
denote actual language and hypothesized language, respectively, i, j = 1,2,3,4,5. Let

D](Li, Lj) = E DE(S, Lj)
BB,
and then define

2 LYRRIE .

=1

DL, L) =

Decision rule B states: Compute the correlation

5
pHS, L) = E D(L;, Lj) DF(S, L))
i=t

and choose, for speaker S, that language Le {L,, Ly o Iyt Ls} such that p(S,L) = 1
p*(S,L) is smallest.

Each of these decision rules was implemented for each of four sequence lengths k = 2,3 ,4,
and 5. Additional decision rules were used which were based on results l'or the four sequence
lengths combined. To exhibit the dependence of the decision parameters on sequence length, k,
define

DF' (S,L,k) = DF(S,L)

for sequence length k = 2,3,4, and 5. Then define

5

DF,(S, L) = Z DF’ (S, L, k)

k=2

Decision rules A* and B* result from using DF_ instead of DF, and then making the succeeding
computations in the same manner as for rules A and B, respectively.
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SECTION V
CLASSIFICATION RESULTS

This section describes the classification results obtained using the various decision rules
described in Section V. Many classification experiments were performed to determine the exact
structure of a classifier which performs well with the training data. The idea is to design the
classifier using the training data and then classify the test speakers to estimate the probability of
correct classification associated with that classifier. Variables that required specification were:
(1) acceptance level for hypothesized sequences; (2) entropy threshold for selection of reference
sequences with sufficient language specificity; (3) decision strategy; and (4) sequence length.

. TRAINING DATA

Figures 8 through 12 show the numbers of errors from classification of the 50 training
speakers as functions of the variables mentioned above. Figures 8 and 9 show (for decision rules
A, A* and B, B*, respectively) the errors as a function of the acceptance level for acceptance of
the hypothesis that a reference sequence has recurred. The cases for the various levels were
described in Subsection I11.3.d and were labeled 0, 1, 2, 3, 4,5, as in the figures. These cases
correspond to 100-, 50-, 25-, 12.5-, 6.25-, and 3.125-percent acceptance of all hypothesized
sequences. These figures include results for each sequence length k = 2,3,4,5, and for each result
plotted, the entropy threshold used was My =2.8.

Figure 10 shows the errors incurred as a function of the entropy threshold for selection of
reference sequences. This parameter determines the total numbers of references of each length
remaining in the file used to compute decision function values. In each case shown, data fram
the 12.5-percent acceptance case was used.

Figure 11 shows the errors as a function of sequence length for the case: (1) H, = 2.3,
(2) 12.5-percent acceptance, and (3) decision rules A and B. This case was chosen because results
for it were at least as good as for the other situations. For rule A of this same case, Figure 12
shows error as a function of the number of reference sequences remaining in the final reference
file.

It is seen that, for the training speakers, Case 3 data (12.5-percent acceptance), an entropy
threshold of H, =2.3, and decision rule A using sequences of length 4 yielded the best
classification performance: 88-percent correct five-language classification.

2. TESTING DATA

Figures 13 and 14 show the numbers of errors resulting from classifying the 50 test
speakers for various decision rules and values of the parameters. The parameters determined from
the training data experiments provided the basis for choosing parameters for classification
experiments with the testing data. Figure 13 shows performance as a function of acceptance level
and Figure 14 shows performance as a function of entropy threshold. It is seen that Case 3 data
and an entropy threshold of H, = 2.3 yield the fewest errors provided that decision rule B was
used with sequences of length 5. This choice yielded 62-percent correct five-language classifi-
cation.
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COMBINATION DECISION STRATEGY

A decision rule was formulated which used sequences of length k = 5 as well as single
segments, as developed in the first phase of this study. During the first phase, values of
decision function DYS.L) were determined (Table X1, reference 1) which were computed from
the same test data. A decision function which combined the results of the two phases of this
study was computed (for i =1,2.3,4,5) to be:

p(S, Ll) L] D],(Sl LI)

Sjtgl Sj(-‘si

DS, L) =

where p(S,L;) was computed for sequence length k = 5. Choosing the language which yielded the
smallest value for D (S.L) to classify the test speaker S yielded the confusion matrix shown in
Figure 15. The overall classification accuracy resulting from this combination rule is 70 percent.
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Figure 15. Confusion Matrix From Use of Combination Decision Rule




SECTION VI
CONCLUSIONS AND RECOMMENDATIONS

In this study language classification was based on sequences of 1, 2, 3, 4, and 5
phoneme-like sound segments. The approach taken treated each language identically, without
special linguistic considerations. Time-frequency scanning was used to hypothesize time registra-
tion points and generate candidate reference sequences. Relationships among occurrence times,
speech energy, and scanning errors were used to hypothesize the recurrence of reference
sequences in input speech data. Classification was based on summed logarithms of the languuage
likelihood estimates, given the occurrences of the reference sequences.

Sequences of length 4 performed best in classifying training speakers. For this best case, an
entropy threshold of 2.3 provided the best rejection of sequences not having sufficient language
specificity, and the acceptance threshold was set such that 12.5-percent of all hypothesized
sequences were considered. In classifying the 50 training speakers, 88-percent correct five-
language classification resulted.

A decision rule using sequences of length 5 in combination with sequences of length 1
(single segments) yielded Dbest performance in classifying the test speakers, yielding 70-percent
correct five-language classification. Again, the 2.3 entropy rejection level and 12.5-percent
acceptance level for hypothesized sequences (as predicted from training data results) proved most
useful when the independent test data was classified.

Speaker dependence provia to be a formidable obstacle in attaining good classification
results. The same nine test speakers (18 percent of the test data base) were misclassified by both
the decision rule B using sequences of length 5 and the decision rule using D'(S,L) for single
segments. To reduce such speaker dependency, the following improvements are planned:

A voiced-data indicator and a pitch measure should be included in the spectral data
representation.

Labeling of sequences as to basic sound type (e.g., stop, fricative, vowel, consonant)
should provide better sequence classification as well as less speaker
dependency.

To allow averaging the effects of individual speakers, separate representation of
overall sequence data should be defined and used.

There should also be significant improvement in data processing throughput to allow more
detailed understanding, analysis, and refinement of reference sequence files.
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